nano_exit

基礎的なことこそ、簡単な例が必要だと思うのです。

2019-09-01から1ヶ月間の記事一覧

時間順序演算子を用いた時間発展演算子の表現。

時間発展演算子は、一般のハミルトニアンに対して次のように表される。 注意として、の順番は勝手に変えてはいけない。 順番を変えて良いのは、同じ時刻の時にのみ限る。 二番目の積分を変形していくが、以下の積分は変数変換をするわけではなく、厳密に同じ…

CoulombポテンシャルのFourier変換(収束因子経由)

以前に、CoulombポテンシャルのFourier変換を、Poisson方程式を経由することで求めた。 koideforest.hatenadiary.com今回は収束因子を導入することによって求める。 と定義すると、 この積分を評価する。と定義し、と置くと、 したがって、

電子ガス模型における電子間相互作用の一次摂動。

電子ガス模型における電子間相互作用の効果を、一次摂動で求める。 ここで、変数変換およびをすると、対称性が良くなる。 半径の球を考える。のとき、の動く範囲はこの球に一致する。 絶対値の中身を具体的に考えると、 これをもとに、で固定したときに許さ…

軸対称な物体の体積。

CTスキャンのように、断面図をからまで足し合わせていくイメージである。 軸対称なため、断面図は半径の円である。球体の場合、 であるから、 となり、よく知っている球の体積が得られた。

電子ガスでよく使うパラメータまとめ

電子密度 電子一個が占める球の半径 Bohr半径 Bohr半径で規格化した電子一個分の半径 Fermi波数

Bosonの多電子波動関数

参考文献:Fetter-WaleckaBosonの多電子波動関数は一電子Boson波動関数および展開係数を用いて、一般に以下のように書ける。 上記に対する例を挙げると、 注意として、 占有率表示における規格化条件は、 のうち、"1"の状態に割り振る数を、"2"に割り振る数…

組み合わせの一般化。

個の要素(例えば番号の振られたボール)のうち個を取り出して、それを個のグループ(例えば番号の振られた筒)に分けたときに、各グループ内の要素の個数がとなる組み合わせの数は、 ただし 証明 個の要素(例えば番号の振られたボール)から個を取り出して…

はじめてのベイズ法。

IPythonデータサイエンスクックブックに載っていた内容の紹介。以下、言葉と記号を整理しておく。 : モデルを構成するパラメータ。ただし、確率変数として扱っていく。 : 「事前確率分布」と呼ばれる、を決定するのに何も情報を持っていない時に仮定するの確…

調和振動における滞在時間からの分布関数の導出。

古典的な調和振動は以下のように表される。 周期を用いて、この振動の(位置)期待値を取ると、 つまり、原点に多く存在している「ように」見える。次に、標準偏差を取ると、 となり、「少なくとも」常に原点にいるわけではないことがわかる。一方、原点から…

無限級数の部分和による近似。

無限級数を部分和に分解したときに、相対誤差がどのようになるかを考察してみた。 無限級数を以下のように定義する。 この無限級数を次の様に部分和で近似してみる。 この近似の相対誤差は、 更に、で元の無限級数に一致させるために、重み付けして和を取る…

Campbell-Baker-Hausdorffの公式と生成消滅演算子の時間発展。

いつも公式を忘れるので、ここでまとめる。 Campbell-Baker-Hausdorffの公式を帰納法を用いて証明する。 帰納法を使えば、 したがって、一般の次数における微分係数が求まったため、Maclaurin展開より、 Campbell-Baker-Hausdorffの公式を(自由)電子系に応…

二項分布まとめ

二項分布の平均と分散がわかりにくかったのでまとめ。 参考:二項分布の平均と分散の二通りの証明 | 高校数学の美しい物語このとき、二項分布に従う確率変数と、となる確率 は次のように定義される。 が規格化されていることを確認。 二項分布に従う確率変数…

極値において、一階微分がゼロでも二階微分はゼロじゃない点について

例として、三次方程式 を考える。では極値を取るとすると、 極値が存在するかどうかは、二次方程式の判別式を解く必要があるが、極値の存在を仮定すると、の関係が求まる。この条件のもと、極値における二階微分を求めると、 となり、一般にゼロでない。この…

正規分布関数(Gauss関数)の正規性、平均および分散

正規分布関数を以下に定義する。 規格化が成り立っていることの証明。 平均値がであることの証明。 分散がであることの証明。 よって、は標準偏差を表すことになる。