nano_exit

基礎的なことこそ、簡単な例が必要だと思うのです。

ポテンシャルの角運動量展開

非球対称ポテンシャルでは、波動関数を球面調和函数で展開すると角運動量を添字とする行列になることを示した。 koideforest.hatenadiary.com 角度積分するのに掛かる時間を、必要な最大の軌道角運動量と動径メッシュの数をそれぞれ、とすると、全ての行列要…

非球対称ポテンシャルにおけるT行列

前回、非球対称ポテンシャルの時には、位相シフトがT行列を表すのにあまり役に立たないことを示した。 koideforest.hatenadiary.com今回は、どうやってT行列(の行列成分)を求めるかを考える。 波動関数はT行列を使って次のように書けることを前回示した。 …

散乱理論:位相シフトとT行列:非球対称ポテンシャル

以前、球対称ポテンシャルの時の位相シフトとT行列についてまとめた。 koideforest.hatenadiary.com今回は、非球対称の時に両者がどのように結ばれるかを調べる。前回と同様、外側で値を持たないポテンシャルに対する外側の波動関数は、一般に次のように書け…

永年方程式は無限空間には使えない。

第一原理計算でよくある平面波展開は、よく考えると無限空間には使えない。 というのも、平面波の規格化が箱の規格化ではなく、デルタ関数規格化だからである。を無限空間の平面波で展開すると、 これの左から任意の平面波をかけて、位置で積分することで直…

単振動を(完全)Green関数を使って解く。

これまでは以下の非摂動Green関数を使って来た。 koideforest.hatenadiary.com また、T行列を使うと、積分の中をを使って表すことが出来る。 koideforest.hatenadiary.com 今回は、を取り込んだ(完全) Green関数を使う。 単振動のGreen関数は以前に既に求…

Muffin-tin近似と厳密なポテンシャルとの差について

簡単のため、二個の離れた原子核からのクーロンポテンシャルのみを扱うとする。 この時の、厳密なポテンシャルとMuffin-tin近似との差を見る。Muffin-tin近似をする際、隣のサイトのポテンシャルの球平均は、以前にまとめた方法を使った。 koideforest.haten…

誤差関数によるステップ関数でGibbs現象は起こるか?

ステップ関数等で不連続に打ち切られた関数をフーリエ変換しようとすると、どんなに頑張っても振動が残る。 これはギブス現象として知られている。 ギブズ現象 - Wikipediaでは、ステップ関数の代わりに誤差関数で滑らかにしたら、どれくらい収束が良いのか…

Juliaで一次元井戸型ポテンシャル

以下のサイトの下の方に、Juliaで一次元のシュレーディンガー方程式を解くPDFが紹介されている。 物理ノートby永井Juliaの練習としてやってみた。 PDF内では、無限の井戸の中に斥力ポテンシャルを入れた場合をやっているが、ここでは引力ポテンシャルに対し…

二次元のベクトルの割算について

ベクトルの割算ってなんだ?って思った時に、複素数の割算を考えてみた。虚数は行列に直すことが出来るので、 これはベクトルの変換行列を求めたことに対応する。 と定義すれば、回転行列をでスケールした変換行列になることがわかる。ここまで、幾何学的な…

単振動をT行列を使って解く。

前回、Green関数を使って古典単振動の軌跡を求めた。 koideforest.hatenadiary.com今回は、無限級数の別表現として、行列を使ってみる。 行列は、Green関数を用いて次のように定義出来る。 この行列を用いて、前回の式を書き直すと、 だから、 ここで、Green…

単振動を(非摂動)Green関数を使って解く。

前回、Green関数を使って古典力学の基礎問題を解いた。 koideforest.hatenadiary.com koideforest.hatenadiary.com今回は古典単振動の軌跡をGreen関数を使って求める。 自由落下の時は、非斉次項が定数だったが、単振動では求めたい関数自身が含まれているた…

自由落下をGreen関数で解く。

二階微分だけの演算子に対するGreen関数を求めた。 koideforest.hatenadiary.com求めたと言っても、斉次解が含まれていないので、Green関数の一般解にはなっていない。 斉次解を含めると、ここで、自由落下の問題を考える。 この時、Green関数を用いると、 …

二階微分だけの演算子のGreen関数(フーリエ変換経由)

前回、単振動方程式におけるGreen関数を導出した。 koideforest.hatenadiary.com二階微分だけとなると と置き換えることに対応するのは明らかである。 実は、ここから直接求めようとすると、二位の極をまともに扱わないといけないので、死にかけた(というか…

単振動方程式に対するGreen関数(コーシーの主値積分ver.)

一次元の単振動の微分方程式に対するGreen関数を求めてみる。 したがって、計算するべき積分は、 時間が正か負かで積分経路が変わるので、以下場合分けで考える。 フーリエ積分を複素平面に拡張すれば、 今、実軸上の極を全て避けるように積分経路を取ったの…

任意の二つの量を三角関数で表す

この時、以下の関係を満たし、三角関数の枠内に収まる。 振動を扱っていると、よく見かける変形である。例えば、次のような同じ周期の三角関数の合成を考えると、 よって合成後に位相がずれるだけで済む。位相のズレの大きさは、 で求まり、 のとき であるか…

円周率が3.8より大きい証明(?)

円周率が4である動画が話題になった。 「円周率=4」を証明してみせましょう。“3.14…”を覆す新理論(?)に驚愕する声多数! 理数系学生「反論思いつかなくて草」 これと似たようなことを自分でもやってみた。アイデアは「波数が無限に大きく、かつ振幅が無…

pythonでペンローズタイリング

ペンローズタイリングとは、ペンローズが開発した非周期的な図形の敷き詰め方である。 以下のサイトで、ペンローズタイリングの方法と、そのpythonスクリプトが公開されている。 Penrose Tiling Explained図の描画には、pycairoが使われていて、事前にインス…

円運動

原点を中心とした円の軌跡は以下のように記述出来る。 原点周りの円周上の運動を考える。そのためは定数で時間変化しないとし、角度の時間微分を角速度として定義する。(円運動を「角度のみが変化する運動」と言い換えても良いだろう。)運動方程式の用途と…

頂角が小さい二等辺三角形の底辺について

回転運動の説明を読んでいる時に、角度が小さい時の差ベクトルの近似について気になったので考えて見た。 等速円運動 [物理のかぎしっぽ]以下の図のような二等辺三角形における底辺(青)、円弧(赤)、そして垂線(緑)を考える。 図では頂角は30度でプロッ…

剛体の運動:ヨビノリの動画の補足

剛体は結局学部ではやらず、研究室のゼミでやるわけでもなく、独学だったのでヨビノリで復習してみた。 多体問題として剛体を見ると、かなり面白いと感じざるを得ない。ここでは自分の理解のために、そこで出てくる数学的事項等を自分の好みに合わせて補足し…

sympyで(平面の)Greenの定理を確認

sympyの練習を兼ねて、平面に対するGreenの定理で、問題を解いてみる。 平面のグリーンの定理 [物理のかぎしっぽ]以下の積分を求めてみる。 原点で最大値を取り、等方向的で、境界でゼロを持つような、何かしらの密度を積分する、と思えば解りやすいだろうか…

単振り子の問題がパッと受け入れられない件について

単振り子の振動の振舞を求める問題は、単振動の典型的な例題の一つであるが、何かしっくり来ない。 単振り子 ■わかりやすい高校物理の部屋■ 単振り子を徹底解説!近似の使用法&運動方程式から周期を導出する方法 単振り子:運動方程式そのため、しっくり来な…

量子力学でのガリレイ変換

特殊相対論(古典力学)の導入でガリレイ変換とローレンツ変換(ローレンツブースト)を比較することが多いが、そもそも量子力学でのガリレイ変換ってなんだ?と思い、簡単に考察。 以下のpdfを参考にした。 http://cat.phys.s.u-tokyo.ac.jp/lecture/QM_1_1…

多重項を数える(2)

以前に、軌道内の多重項を求めるスクリプトを書いた。 koideforest.hatenadiary.comここではそれらを用いた上で、さらに軌道間で多重項を合成する。 軌道の記号と値を行き来する関数 def spec2l( spec ): if spec in { "s", "S" }: l = 0 elif spec in { "p"…

量子揺らぎと不確定性原理

量子揺らぎと不確定性原理について言及してある記事を下記サイトで見つけた。 第一原理計算入門 密度汎関数法 理解への道「量子揺らぎ」と聞くと、何だかよくわからないが、要は「状態が混ざる」ということである。古典的な意味の平均(期待値)および分散は…

密度汎関数理論( DFT)では強配位子場しか計算出来ない?

学生の時に教授から言われた「DFTでは強配位子場しか計算出来ない」というフレーズをふと思い出した。 その時は何を言われているのかよくわからなかったが、今は「何も工夫しなければまぁそうだろう」と思う。いくつか鍵となる概念がある。 DFTは、Kohn-Sham…

三つの散乱波動関数

前回、位相シフトと行列の関係についてまとめた。 koideforest.hatenadiary.com散乱波動関数は、ざっくり3つに分けられると思うので、それぞれまとめてみた。 結局は、位相シフトで全部繋がる。 散乱振幅 位相シフト Green関数(Lippman-Scwinger方程式解)

散乱理論:位相シフトとT行列

外側で値を持たないポテンシャルに対する外側の波動関数は、一般に次のように書ける。 平面波の球面波展開と比較すれば、動径S-eq.の非正則解の線形結合になっていて、一般解の形になっているのがわかると思う。 であるため、この変換は厳密である。 (わざ…

多重項を数える(1)

前回、binary表現を使って、電子配置を作ることを試みた。 koideforest.hatenadiary.com次のステップとして多重項を数え上げるため、電子配置を作るのと同時に角運動量とスピンも一緒にリストで保存するように改良した。 def add_electron( configurations0,…

バイナリーと量子力学

例えば2p軌道とかのp軌道の場合、一電子状態は以下のどれかに対応する。(1,u), (1, d), (0, u), (0, d), ( -1, u), ( -1, d)これを、binary形式、「電子がいる軌道=1」、「電子がいない軌道=0」とすれば、例えば、(1,u)と(1, d)が占有されているとき、110000…